Representing shapes from a generative model perspective

Patrick Sproete & Roland W. Fleming | Department of Experimental Psychology | University of Giessen

Background

Perceiving shapes as transformed

Asymmetric Matching Task

Question: To what extent can subjects separate causal contributions

to shape?

Degree of bending, Shapes:

Task:

Orientation

Trial

Make the match shape as "bent" as the test shape (while ignoring any other difference in shape) & rate your con-

fidence.

Time

Shape dimensions

Results (Matching task)

Subjects extract transformations

Nulling Task

What bend configuration do subjects perceive as neutral Question:

(not bent)?

Task: Adjust the shape until it appears 'not bent' to you!

Adjust bend

Identification Task

Question: Can subjects discount the transformation?

Task:

Choose untransformed version of test shape (center) from set of 4 untransformed shapes (surround)

Results (Identification task)

Subjects can discount transformations

- Subjects performed significantly above chance (red dashed line)
- unbent was easier than bent object
- Additional cost to undo transformation
- Correct through a process of elimination

General Conclusion & Discussion

Generative models play a crucial role in shape perception

